

QUALIDADE FISIOLÓGICA DE SEMENTES DE SOJA (Glycine max) SUBMETIDAS A DIFERENTES INSETICIDAS EM TRATAMENTO DE SEMENTES E PERÍODOS DE ARMAZENAMENTO¹

CISCON, G. P.²; ANDRZEJEWSKI, J. H. S²; SANTOS, L. B²; BELLETTINI, S³; BELLETTINI, N. M. T.³.

²Acadêmicos de Agronomia da Universidade Estadual do Norte do Paraná – Campus Luiz Meneghel (UENP/CLM), Bandeirantes – PR ³Professores da Universidade Estadual do Norte do Paraná – Campus Luiz Meneghel (UENP/CLM), Bandeirantes – PR

Resumo

Avaliou – se na Universidade Estadual do Norte do Paraná, Campus Luiz Meneghel, Bandeirantes – PR, inseticidas em tratamento de sementes nos cultivares de soja, Monsoy 6410 IPRO e Monsoy 5917 IPRO em diferentes tempos de armazenamento. Foram utilizados 6 tratamentos com 4 repetições sendo: piraclostrobina + tiofanato metílico + fipronil (Standak Top 200 mL); ciantraniliprole (Fortenza 600 FS 200 mL); clorantraniliprole (Dermacor 100 mL); imidacloprido + tiodicarbe (Cropstar 700 mL); tiametoxam (Cruiser 350 FS 300 mL / 100 Kg de sementes) e testemunha (sem tratamento de semente) .Utilizou - se bandejas com 36 células por repetição nos tempos 0, 15, 30, 45 e 60 dias de armazenamento, avaliando as plantas emergidas aos 8 dias após cada instalação, transformando – se em porcentagem. Concluiu – se que os diferentes tratamentos de sementes com inseticidas, diminuiram a porcentagem de plantas emergidas ao longo do tempo de armazenamento em condições ambientais não controladas.

Palavras-chave: Inseticidas, Semente.

Introdução

Para a manutenção de altos níveis de qualidade, o armazenamento de sementes não pode ser considerado somente a partir do seu beneficiamento, e sim, desde o ponto de maturidade fisiológica no campo de produção até o período de plantio. Em qualquer uma destas fases, a semente está em processo de deterioração (envelhecimento), que pode ser maior ou menor dependendo de fatores genéticos, das condições ambientais (umidade relativa do ar e temperatura do ambiente) e da umidade da semente durante o armazenamento. Nas regiões de clima tropical do Brasil, as variações climáticas têm grande influência na conservação das características fisiológicas da semente (VILLELA e MENEZES, 2009).

O tratamento de semente de soja é uma técnica muito importante para o sojicultor, garantindo que terá a semente protegida no solo, caso a semeadura ocorra com períodos de seca ou de baixa disponibilidade hídrica.

Tavares et al. (2007) observaram efeito favorável com a aplicação do thiametoxan, com aumento da área foliar e radicular de plantas de soja tratadas com esse inseticida. O efeito do thiametoxan, na soja, é indireto, atuando na expressão dos genes responsáveis pela síntese e pela ativação de enzimas metabólicas, relacionadas ao crescimento da planta, alterando a produção de aminoácidos, precursores de hormônios vegetais. Com a maior produção de

¹ Projeto com auxílio financeiro da Fundação Araucária

hormônios, a planta apresenta maior vigor, germinação e desenvolvimento de raízes. Esse ingrediente ativo também melhora a nutrição mineral da soja, e estimula a expressão gênica das proteínas de membranas que aumentam o transporte iônico e a absorção de minerais.

A qualidade das sementes influencia fortemente o sucesso ou fracasso da cultura, especialmente em condições de estresse ambiental, para tanto métodos experimentais de determinação de vigor e germinação, foram desenvolvidos para minimizar o risco de utilização de sementes de baixa qualidade (HALMER, 2000).

O experimento foi instalado com o objetivo de avaliar diferentes inseticidas em tratamento de sementes de soja sob determinados períodos de armazenamento.

Materiais e métodos

O experimento foi conduzido em casa de vegetação na Universidade Estadual do Norte do Paraná, Campus Luiz Meneghel - Bandeirantes-PR, com sementes de soja cultivar Monsoy 6410 e 5917 produzidas na safra 2017/2018. Utilizou-se delineamento experimental em blocos ao acaso com 6 tratamentos e 4 repetições. Os tratamentos em p.c 100 kg⁻¹ de sementes foram: clorantraniliprole (Dermacor 100 mL), tiametoxam (Cruiser 300mL), imidacloprido + tiodicarbe (Cropstar 700 mL), fipronil + piraclostrobina + tiofanato metílico (Standak Top 200mL), ciantraniliprole (Fortenza 200mL) e testemunha (sem inseticida).

O tratamento das sementes foi realizado manualmente usando sacos plásticos, adicionando-se 500 g de sementes por tratamento e inseticida para cada tratamento. Os sacos plásticos foram insuflados de ar e agitados durante dois minutos para homogeneizar as sementes e em seguida secadas a sombra, posteriormente foram embaladas em sacos de papel e armazenadas em condições ambientais não controladas. A qualidade fisiológica das sementes foram avaliadas nos períodos de 0, 15, 30 ,45 e 60 dias após o tratamento, através do teste de emergência em bandejas (BRASIL 2009). Para a análise estatística, utilizou-se os dados originais aplicando-se o teste F e Scott-Knott (CANTIERI et al 2001).

Resultados e Discussão

Em relação a porcentagem de emergência no cultivar 6410 (Tabela 1), Standak Top obteve o maior valor aos 0 DAT (Dias após o tratamento de sementes) diferindo estatísticamente somente aos 30, 45 e 60 DAT. Fortenza não apresentou diferença estatística em nenhum tempo de armazenamento. Dermacor apresentou diferença estatística, principalmente nos tempos de armazenamento de 15 e 45 DAT. Cropstar e Cruiser aos 15, 30, 45 e 60 DAT apresentaram diferença significativa de 0 DAT, concordando com Fessel et al. (2003) verificando que o vigor das sementes diminuiu com o aumento do tempo de armazenamento das sementes tratadas. A testemunha aos zero e 60 DAT também diferiram de 15, 30 e 45 DAT.

Tabela 1. Porcentagem de plantas emergidas nos diferentes tratamentos em função do tempo de armazenamento.

Cultivar	Tratamentos	Tempo de armazenamento (Dias)					
		0	15	30	45	60	
	1. Standak Top	81,7a	77,3a	40,2c	59,0b	57,6b	
6410	2.Fortenza	89,5a	71,4a	65,2a	53,4a	72,9a	
	3.Dermacor	81,9a	32,6c	54,1b	37,7c	61,1b	
	4.Cropstar	81,9a	25,7b	31,9b	38,1b	39,6b	
	5.Cruiser	80,5a	46,5b	50,7b	47,9b	54,1b	
	6.Testemunha	90,3a	51,3c	73,6b	76,4b	87,5a	

Valores seguidos de mesma letra, na horizontal, não diferem entre si pelo teste de Scott-Knott a 5% de probabilidade.

Na porcentagem de emergência do cultivar 5917 (Tabela 2), Standak Top diferiu estatisticamente somente aos 30 DAT. Fortenza e Dermacor foram superiores aos demais tempos de armazenamento aos 30 DAT. Cropstar e Cruiser somente aos 45 e 60 DAT diferiram dos demais tempos de armazenamento. Para Horii et al. (2007), inseticidas como o tiametoxam podem auxiliar na rota metabólica da pentose fosfato, favorecendo a hidrólise de reservas e aumentando a disponibilidade de energia para o processo de germinação e emergência da plântula. A testemunha aos 15, 45 e 60 DAT diferiram estatisticamente de 0 e 30 DAT.

Tabela 2. Porcentagem de plantas emergidas nos diferentes tratamentos em função do tempo de armazenamento.

Cultivar	Tratamentos	Tempo de armazenamento (Dias)					
		0	15	30	45	60	
5917	1. Standak Top	61,7b	54,8b	86,0a	56,2b	56,9b	
	2.Fortenza	65,9b	60,4b	84,6a	27,0c	18,7c	
	3.Dermacor	70,1b	56,2c	90,2a	34,6d	52,7c	
	4.Cropstar	72,2a	63,8a	65,2a	52,7b	44,3b	
	5.Cruiser	65,2a	63,8a	72,1a	21,4b	34,8b	
	6.Testemunha	88,8a	82,6b	91,6a	74,2b	74,9b	

Valores seguidas de mesma letra, na horizontal, não diferem entre si pelo teste de Scott-Knott a 5% de probabilidade.

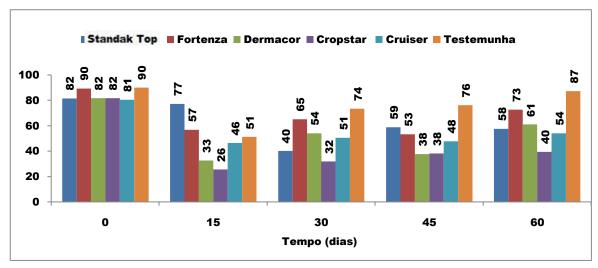


Figura 1. Porcentagem de plântulas emergidas em função das épocas de armazenamento nos diferentes tratamentos do cultivar M 6410.

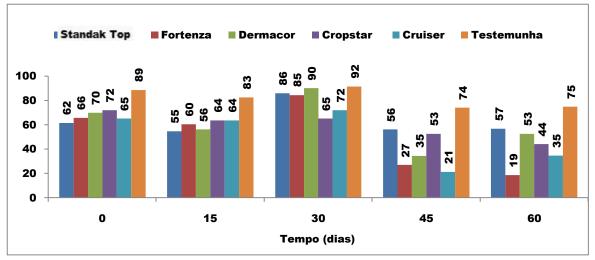


Figura 2. Porcentagem de plântulas emergidas em função das épocas de armazenamento nos diferentes tratamentos do cultivar M 5917.

Conclusões

Os diferentes tratamentos de sementes com inseticidas, diminuiram a porcentagem de plantas emergidas ao longo do tempo de armazenamento sem controle de temperatura e umidade.

Agradecimentos

Agradeço aos orientadores pela atenção, os amigos pela ajuda e a agência de fomento (Fundação Araucária; UENP).

Referências

BRASIL. **Ministério da Agricultura. Regras para análise de sementes**. Brasília: MAPA/ACS, 2009. 399 p.

CANTERI, M.G.; ALTHAUS, R.A.; VIRGENS FILHO, J.S.; GIGLIOTI, E.A.; GODOY, C.V. SASM-Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scoft-Knott, Tukey e Duncan. **Revista Brasileira de Agrocomputação**, v.1., n.2., p.18-24, 2001.

FESSEL, S.A.; MENDONCA, E.A.F.; CARVALHO, R.V. Effect of chemical treatment on corn seeds conservation during storage. **Revista Brasileira de Sementes**, v.25, n.1, p.25-28, 2003.

HALMER, P. Commercial seed treatment technology. In: BLACK, M. and BEWLEY, J.D. (Ed.) **Seed Technology and its Biological Basics**. England: Sheffield Academic Press, 2000, p.266-273.

HORII, P.M.; MCCUE, P.; SHETTY, K. Enhancement of seed vigour following insecticide and phenolic elicitor treatment. **Bioresource Technology**, v.98, n.3, p.623-632, 2007. Crossref.

MARCOS FILHO, J.; NOVEMBRE, A.D.C e CHAMMA, H.M.C.P. Tamanho da semente e o teste de envelhecimento acelerado para soja. **Scientia Agricola**, v. 57, n. 3. p. 473-482, 2000.

TAVARES, S.; CASTRO, P.R.C.; RIBEIRO, R.V.; ARAMAKI, P.H. Avaliação dos efeitos fisiológicos de thiametoxan no tratamento de sementes de soja. **Revista de Agricultura**, v.82, p.47-54, 2007.

VILLELA, F.A; MENEZES, N. L. O Potencial de armazenamento de cada semente. **Seed News**, v. 13, n. 4, jul/ago., 2009.