

ANÁLISE DA INTERAÇÃO GENÓTIPO X AMBIENTE EM LINHAGENS DE ARROZ IRRIGADO NO ESTADO DE MINAS GERAIS

Rafael Paulo da Silva¹; Plínio César Soares²; Weverton Gomes da Costa³; Cosme Damião Cruz⁴; Antônio Carlos da Silva Júnior⁵; Iara Gonçalves dos Santos⁶;

¹Estudante de graduação, Ciências Biológicas, Universidade Federal de Viçosa, <u>rafael.paulo@ufv.br</u>. ²Pesquisador/Bolsista BIPTD FAPEMIG/EPAMIG - Viçosa, <u>plinio@epamig.br</u>. ³Doutorando em Genética e Melhoramento de Plantas. Bolsista CAPES. Universidade Federal de Viçosa. ⁴Professor titular, Departamento de Biologia Geral, Universidade Federal de Viçosa. ⁵Doutorando em Genética e Melhoramento de Plantas. Bolsista CNPq. Universidade Federal de Viçosa. ⁶Doutoranda em Genética e Melhoramento. Bolsista CNPq. Universidade Federal de Viçosa.

Resumo

O arroz é uma cultura essencial para a alimentação de mais de 50% da população mundial. Em Minas Gerais, a avaliação e seleção das melhores linhagens de arroz irrigado são feitas pela parceria entre a Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), a Universidade Federal de Lavras (UFLA) e a Embrapa Arroz e Feijão. É importante realizar a análise e interpretação sobre a interação genótipo ambiente, pois esta pode interferir nos objetivos de um programa melhoramento genético. O presente trabalho utilizou dados de ensaios comparativo avançados (ECA's ou VCU's) do programa de melhoramento de arroz irrigado da EPAMIG para verificar a existência de modificações comportamentais dos genótipos em virtude das alterações ambientais. Utilizou-se o delineamento estatístico de blocos ao acaso com três repetições e as parcelas experimentais com área total de 7,5m² e área útil de 3,60m², e as características produtividade de grãos (Kg.ha⁻¹) e altura da planta (cm), por meio do estudo das variâncias dos fatores de variância e da decomposição da interação em suas porções simples e complexa. Houve mudança de desempenho dos genótipos nos diferentes locais e a interação genótipo ambiente foi significativa para os caracteres avaliados, mas não mostrou dissimilaridade entre eles. Este estudo se mostra útil para planejamento, condução de testes comparativos e recomendação de cultivares de forma mais eficiente.

Palavras-chave: Interação GxA; Arroz irrigado; Melhoramento.

Introdução

O arroz é uma cultura essencial para a alimentação de mais de 50% da população mundial. No Brasil, ele é produzido em todo o território, sendo que a Região Sul é responsável por quase 80% da produção nacional (CONAB, 2019). Em Minas Gerais, a avaliação e a seleção das melhores linhagens de arroz irrigado são feitas pela parceria entre a Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), a Universidade Federal de Lavras (UFLA) e a Embrapa Arroz e Feijão. Os Ensaios Comparativos Avançados (ECA's) ou Ensaios de valor de Cultivo e Uso (VCU's), onde ocorrem a avaliação e seleção das melhores linhagens, podem ser utilizados para estimar ganhos genéticos em arroz. Nesses ensaios, a cada ano, os genótipos são cultivados em diferentes ambientes, são eliminados os que apresentam os menores valores produtivos (SANTOS et al., 1999) e é verificado os ganhos genéticos em cada linhagem.

A avaliação das linhagens, em um programa de melhoramento, é uma das etapas mais importantes, assim, faz-se necessário um rigoroso estudo sobre a adaptabilidade e estabilidade das mesmas (ROSADO, 2012). Entretanto, antes dessas análises é necessário realizar um estudo prévio da interação genótipo por ambientes. Estes estudos evidenciam a dificuldade e importância de e tratar de maneira eficaz os resultados das interações de um mesmo genótipo nos ambientes diferentes em que são cultivados, visto que estas interações são um grande problema para a seleção de genótipos estáveis e altamente produtivos (NETO et al., 2013). Dessa forma, o presente trabalho teve como objetivo verificar a existência da modificação do comportamento relativo das linhagens em virtude da alteração ambiental, por meio do estudo das variâncias dos fatores e da decomposição da interação em suas porções simples e complexa.

Materiais e Métodos

Utilizou-se os dados de ensaios comparativo avançados (ECA's ou VCU's) do programa de melhoramento genético de arroz irrigado da EPAMIG. Foram avaliados 25 genótipos de arroz irrigado, testados nas cidades de Nova Porteirinha-MG, Leopoldina-MG e Lambari-MG, em três safras: 2014/2015, 2015/2016 e 2016/2017. Foi utilizado o delineamento estatístico de blocos ao acaso com três repetições e as parcelas experimentais

com área total de 7,5m² e área útil de 3,60m². Os ensaios foram conduzidos em solos de várzeas e com irrigação por inundação contínua. A densidade de semeadura foi de 300 sementes.m⁻². Os demais tratos culturais foram realizados de acordo com o recomendado para a cultura para as regiões (SOARES et al., 2005).

As características agronômicas utilizadas foram produtividade de grãos (Kg.ha⁻¹) e altura da planta (cm). Realizou-se Análise de Variância conjunta dos dados, onde cada localidade dentro de cada safra foi considerada como um ambiente independente, bem como determinação do percentual da porção simples e complexa da interação genótipo x ambiente, como proposto por Cruz e Castoldi (1991). Os dados foram analisados utilizando o software GENES (CRUZ, 2016).

Resultados

Para produtividade de grãos as análises de variâncias individuais para cada ambiente mostraram que os genótipos apresentaram variabilidade apenas para os ambientes 1, 7 e 8 (p-valor<0.05) (Tabela 1). Assim, o maior investimento na diversidade dos materiais é uma tarefa imprescindível para o programa, uma vez que sem variabilidade não há razão para que haja seleção de genótipos, sendo estes considerados similares entre eles. Dessa forma é imprescindível que haja uma análise conjunta dos ambientes para verificar se o meio está interferindo para diminuir a similaridade entre os genótipos.

Para a altura das plantas, as análises individuais evidenciaram que não houve variabilidade significativa apenas nos ambientes 4, 5 e 6 (p-valor>0.05). Isso mostra que existe uma variabilidade genética considerável, mas que ainda pode alcançar ganhos maiores, pois espera-se alcançar a maior variabilidade genética possível. Mesmo assim, também, é necessária uma análise conjunta, para entender como o ambiente está interferindo na similaridade dos genótipos testados para esse característica.

Tabela 1: Análise de variância individual por ambiente para produtividade de grãos e altura de plantas.

Produtividade de grãos						
AMBIENTE	QMB	QMT	QMR	Teste F	P-valor	
1	1013033.4912	592457.8655	257810.3246	2.2980	0.0165	
2	1858748.6491	1091452.2554	948506.0010	1.1507	0.3488	
3	6144601.7018	1075157.8246	836309.3129	1.2856	0.2537	
4	18010477.6315	865677.9942	1175186.6871	0.7366	1.0000	

5	5 18010477.6315		1175186.6871	0.7366	1.0000
6	6 2586122.1228		697802.3636	1.4773	0.1562
7	2259845.1053	1046435.0370	530238.9756	1.9735	0.0406
8	1765882.8947	1710918.8986	319224.3021	5.3596	0.0000
\mathbf{GL}	2.0000	18.0000 36.0000			
		Altura de plantas	}		
AMBIENTE	QMB	QMT	QMR	Teste F	P-valor
1	4.2807	25.5692	5.5400	4.6154	0.0000
2	60.0526	77.7349	14.2378	5.4597	0.0000
3	27.0000	55.4522	16.0926	3.4458	0.0008
4	28.0072	82.9662	44.2498	1.8749	0.0534
5	28.0072	82.9662	44.2498	1.8749	0.0534
6	113.1053	19.8109	26.2905	0.7535	1.0000
7	11.2807	79.4074	4.2437	18.7120	0.0000
8	0.4912	104.0682	1.0653	97.6889	0.0000
GL	2.0000	18.0000	36.0000		

A média e o coeficiente de variação obtidos para produtividade de grãos foram de 5215.79 kg.ha⁻¹ e 16.52% (Tabela 2), respectivamente. Já para altura de plantas esses parâmetros obtiveram valores de 90.51cm e 4.88% (Tabela 2). Referindo-se a produtividade de grãos, os valores obtidos por esses parâmetros são excelentes, uma vez que a média para essa característica foi o dobro do obtido em Minas Gerias na safra 2018/19 (Conab, 2019) e com coeficiente de variação satisfatório, permitindo assim boa precisão experimental. Com relação à altura de plantas, a precisão experimental foi melhor ainda e a média reflete que os genótipos estão com estatura adequada para evitar o acamamento das plantas e beneficiar a forma de colheita, tanto manualmente como mecanicamente.

Foi realizada Análise de Variância conjunta dos dados (Tabela 2), onde cada localidade dentro de cada safra foi considerada como um ambiente independente, bem como determinação do percentual da porção simples e complexa da interação genótipo x ambiente, como proposto por Cruz e Castoldi (1991). Pela análise de variância verificou interação genótipo ambiente significativa para os dois caracteres avaliados (p<0.05). Entretanto, novamente, como na análise individual, os genótipos não apresentaram diferença significativa entre eles (p>0.05). Evidenciando, mais uma vez, que é necessário a obtenção de linhagens mais dissimilares.

Tabela 2: Análise de variância conjunta para produtividade de grãos e altura de plantas

TOT 7	O.T.	00	OM		D 1 (0/)	
FV GL		SQ	QM	F	Prob(%)	
BLOCOS/AMB	16	103298378.4561	6456148.6535			
BLOCOS	2	15632624.5570	7816312.2785			
BLxAMB	14	87665753.8991	6261839.5642			
TRATAMENTOS	18	23951356.9167	1330630.9398	1.3406	17.4169	
AMBIENTES	7	471985173.9101	67426453.4157	10.4438	0.00623**	
TRATxAMB	126	125064330.3816	992574.0507	1.3367	2.42691*	
RESÍDUO	288	213849527.5439	742533.0818			
TOTAL	455	938148767.2083				
MÉDIA	5215.79167					
CV(%)	16.52105					
Altura de plantas						
FV	GL	SQ	QM	F	Prob(%)	
BLOCOS/AMB	16	544.4498	34.0281			
BLOCOS	2	164.6185	82.3092			
BL x AMB	14	379.8314	27.1308			
TRATAMENTOS	18	1280.3377	71.1299	1.0899	36.9855	
AMBIENTES	7	21602.5908	3086.0844	90.6922	0**	

8223.2171

5614.8991

37265.4946

65.2636

19.4962

0**

3.3475

TRATXAMB

RESÍDUO

TOTAL

MÉDIA

CV(%)

126

288 455

90.5079

4.8785

Posteriormente, constatou-se que a interação complexa predominou em todas as 28 possíveis combinações de ambientes aos pares para altura de planta (Tabela 3). Para produtividade de grãos, onde houve predominância da interação simples, apenas 7 combinações de ambientes foram do tipo complexas (Tabela 3). Tais resultados indicam a existência de mudança de desempenho dos genótipos nos diferentes locais avaliados principalmente para altura de plantas, com a interação genótipo x ambiente complexa sendo mais frequente. Contudo, como observado sobre o tipo de interação, para produtividade de grãos os desempenhos dos genótipos são menos variáveis em diferentes ambientes, dessa forma os genótipos mais produtivos em um ambiente tendem a apresentar os melhores desempenhos nos outros ambientes.

Tabela 3: Correlações entre os ambientes para produtividade de grãos e altura de plantas.

	Prod	Altura de plantas				
AMB -	QMGA	QMR	F	QMGA	QMR	F
1 x 2	908135.4298	603158.1628	1.50563 ns	59.6823	9.8889	6.03528 **
1 x 3	758392.9854	547059.8187	1.38631 ns	32.4795	10.8163	3.00284 **
1 x 4	895447.2934	716498.5059	1.24975 ns	65.0550	24.8949	2.61319 **
1 x 5	895447.2934	716498.5059	1.24975 ns	65.0550	24.8949	2.61319 **
1 x 6	653462.0439	477806.3441	1.36763 ns	18.2281	15.9152	1.14532 ns
1 x 7	1136371.6735	394024.6501	2.88401 **	60.2661	4.8918	12.31978 **
1 x 8	1259657.5565	288517.3134	4.36597 **	57.3626	3.3026	17.36875 **
2 x 3	948592.5156	892407.6569	1.06296 ns	63.5595	15.1652	4.19114 **
2 x 4	1069879.6150	1061846.3441	1.00757 ns	90.0266	29.2438	3.07848 **
2 x 5	1069879.6150	1061846.3441	1.00757 ns	90.0266	29.2438	3.07848 **
2 x 6	795910.8382	823154.1823	0.9669 ns	55.7456	20.2641	2.75095 **
2 x 7	1179770.2388	739372.4883	1.59564 ns	72.1637	9.2407	7.8093 **
2 x 8	1086730.5829	633865.1516	1.71445 ns	65.4328	7.6516	8.55156 **
3 x 4	691027.0166	1005748.0000	0.68708 ns	35.2984	30.1712	1.16994 ns
3 x 5	691027.0166	1005748.0000	0.68708 ns	35.2984	30.1712	1.16994 ns
3 x 6	1397247.5536	767055.8382	1.82157 *	30.5068	21.1915	1.43958 ns
3 x 7	769103.4864	683274.1443	1.12561 ns	86.3372	10.1681	8.49097 **
3 x 8	1472279.7232	577766.8075	2.54822 **	89.7018	8.5790	10.45603 **
4 x 5	0.0000	1175186.6871	0.0 ns	0.0000	44.2498	0.0 ns
4 x 6	1235879.9181	936494.5253	1.31969 ns	53.4868	35.2701	1.51649 ns
4 x 7	675895.1452	852712.8314	0.79264 ns	87.8674	24.2467	3.62388 **
4 x 8	1066345.6170	747205.4946	1.42711 ns	123.8909	22.6576	5.46797 **
5 x 6	1235879.9181	936494.5253	1.31969 ns	53.4868	35.2701	1.51649 ns
5 x 7	675895.1452	852712.8314	0.79264 ns	87.8674	24.2467	3.62388 **
5 x 8	1066345.6170	747205.4946	1.42711 ns	123.8909	22.6576	5.46797 **
6 x 7	1472572.5643	614020.6696	2.39825 **	49.7018	15.2671	3.25549 **
6 x 8	1172197.5292	508513.3329	2.30515 **	56.3187	13.6779	4.1175 **
7 x 8	1512699.4864	424731.6389	3.56154 **	118.6452	2.6545	44.69616 **

Conclusões

Este estudo se mostra útil para planejamento e condução de testes comparativos e recomendação de cultivares de forma mais eficiente. A interação genótipos por ambiente do tipo simples, em maioria dos pares de ambientes, para produtividade de grãos evidencia que os genótipos de maior desempenho são superiores em todos os ambientes. Entretanto, para

altura de plantas a interação genótipos por ambiente mostrou ser mais frequente do tipo complexa.

Agradecimentos

À FAPEMIG pelo financiamento dos projetos de pesquisa em Melhoramento Genético de Arroz Irrigado em Minas Gerais e pela concessão de Bolsas BIC e BIPTD ao coordenador das pesquisas. Ao CNPq e CAPES pela concessão de bolsas de doutorado e de pos-doc em Genética e Melhoramento de Plantas da UFV.

Referências:

Companhia Nacional de Abastecimento (CONAB). **Acomp. safra bras. grãos, v. 6 Safra 2018/19** – N. 5 - Quinto levantamento, Brasília, p. 1-118 Fevereiro 2019. Monitoramento agrícola – Safra 2018/19 Disponível também em: http://www.conab.gov.br ISSN 2318-6852.

CRUZ, C.D.; CASTOLDI, F. Decomposição da interação genótipos x ambientes em partes simples e complexa. **Revista Ceres**, v.38, p.422-430, 1991.

CRUZ, Cosme Damião. Genes Software - extended and integrated with the R, Matlab and Selegen. **Acta Sci., Agron.**, Maringá, v. 38, n. 4, p. 547-552, Dec. 2016. Available from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-

86212016000400547&lng=en&nrm=iso>. access on 22 Mar. 2019. http://dx.doi.org/10.4025/actasciagron.v38i4.32629..

REGITANO NETO, Amadeu et al. Comportamento de genótipos de arroz de terras altas no estado de São Paulo. **Revista Ciência Agronômica**, [s.l.], v. 44, n. 3, p.512-519, set. 2013. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1806-66902013000300013.

ROSADO, Antônio Marcos et al. Seleção simultânea de clones de eucalipto de acordo com produtividade, estabilidade e adaptabilidade. **Pesquisa Agropecuária Brasileira**, [s.l.], v. 47, n. 7, p.964-971, jul. 2012. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-204x2012000700013.

SANTOS, Patrícia Guimarães et al. Avaliação do progresso genético obtido em 22 anos no melhoramento do arroz irrigado em Minas Gerais. **Pesquisa Agropecuária Brasileira**, [s.l.], v. 34, n. 10, p.1889-1896, out. 1999. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-204x1999001000016.

SOARES, P.C.; MELO, P.G.S.; MELO, L.C.; SOARES, A.A. Genetic gain in an improvement program of irrigated rice in Minas Gerais. Crop Breeding and Applied Biotechnology, Viçosa, v.5, p.142-148. 2005.

SOARES, P. C.; MELO, P. G. S. MELO, L. C.; SOARES, A. A. Genetic gain in an improvement program of irrigated rice in Minas Gerais. Crop Breeding and Applied Biotechnology, Viçosa, MG, v. 5, n. 2, p. 142-148, Jun. 2005. Disponível em: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/24014/1/bd6b8337-4583-a49e.pdf. Acesso em 20 mar. 2019.